+ 8

A Forest of Trees. (Python Language)

Build a Random Forest model. Task You will be given a feature matrix X and target array y. Your task is to split the data into training and test sets, build a Random Forest model with the training set, and make predictions for the test set. Give the random forest 5 trees. You will be given an integer to be used as the random state. Make sure to use it in both the train test split and the Random Forest model. Input Format First line: integer (random state to use) Second line: integer (number of datapoints) Next n lines: Values of the row in the feature matrix, separated by spaces Last line: Target values separated by spaces Output Format Numpy array of 1's and 0's Sample Input 1 10 -1.53 -2.86 -4.42 0.71 -1.55 1.04 -0.6 -2.01 -3.43 1.5 1.45 -1.15 -1.6 -1.52 0.79 0.55 1.37 -0.23 1.23 1.72 0 1 1 0 1 0 0 1 0 1 Sample Output [1 0 0] import numpy as np random_state = int(input()) n = int(input()) rows = [] for i in range(n): rows.append([float(a) for a in input().split()]) X = np.array(rows)

27th Dec 2020, 3:09 AM
𝐀𝐲𝐞𝐬𝐡𝐚 𝐍𝐨𝐨𝐫
𝐀𝐲𝐞𝐬𝐡𝐚 𝐍𝐨𝐨𝐫 - avatar
22 Answers
+ 11
# Author: Abdullah Abdelhakeem Amer# # Date : 1/3/2021 # # version : v01 # import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split randomState = int(input()) n = int(input()) rows = [] for i in range(n): rows.append([float(a) for a in input().split()]) X = np.array(rows) y = np.array([int(a) for a in input().split()]) X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=randomState) rf = RandomForestClassifier(n_estimators=5,random_state=randomState) rf.fit(X_train,y_train) print(rf.predict(X_test))
1st Mar 2021, 11:07 AM
Abdullah Abdelhakeem
Abdullah Abdelhakeem - avatar
+ 4
import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split random_state = int(input()) n = int(input()) rows = [] for i in range(n): rows.append([float(a) for a in input().split()]) x = np.array(rows) y = np.array([int(a) for a in input().split()]) x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=random_state) model=RandomForestClassifier(n_estimators=5,random_state=random_state) model.fit(x_train,y_train) print(model.predict(x_test))
18th Oct 2021, 7:24 AM
arian shahbaziyan
arian shahbaziyan - avatar
+ 2
Are you tried to solve it?
27th Dec 2020, 3:15 AM
Manash Saikia [ 45% Active ]
Manash Saikia [ 45% Active ] - avatar
+ 2
It's python
27th Dec 2020, 3:59 AM
𝐀𝐲𝐞𝐬𝐡𝐚 𝐍𝐨𝐨𝐫
𝐀𝐲𝐞𝐬𝐡𝐚 𝐍𝐨𝐨𝐫 - avatar
+ 2
https://code.sololearn.com/cXjNcVa7rDCx/?ref=app Please check this, it's have some error, can you plzzz fix it?
27th Dec 2020, 10:15 AM
𝐀𝐲𝐞𝐬𝐡𝐚 𝐍𝐨𝐨𝐫
𝐀𝐲𝐞𝐬𝐡𝐚 𝐍𝐨𝐨𝐫 - avatar
+ 2
import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split random_state = int(input()) n = int(input()) rows = [] for i in range(n): rows.append([float(a) for a in input().split()]) X = np.array(rows) y = np.array([int(a) for a in input().split()]) x_train, x_test, y_train, y_test = train_test_split(X,y,random_state=random_state) #print(x_train,x_test,y_train,y_test,sep='\n \n') model = RandomForestClassifier(n_estimators=5,random_state=random_state) model.fit(x_train,y_train) pred =model.predict(x_test) print(pred)
7th Aug 2021, 6:11 PM
Edgar Abasov
Edgar Abasov - avatar
0
Try to build it by yourself and post your query here if any error or problem occur in that.
27th Dec 2020, 4:50 AM
Hardik Sharma
Hardik Sharma - avatar
0
هلو
27th Dec 2020, 11:32 AM
حسن علي
حسن علي - avatar
0
AYESHA NOOR Strange, when I ran it yesterday, it passed all the test cases, but today it does not. I fixed it so that now it passes all test cases again, please let me know if this works for you now 🐨🐨🐨 https://code.sololearn.com/c8a9a42A18A9
27th Dec 2020, 6:20 PM
Edward Finkelstein
Edward Finkelstein - avatar
0
a''rore b (kanterd) (1)
28th Dec 2020, 3:46 AM
Md Sobuj
Md Sobuj - avatar
0
Oh
29th Dec 2020, 12:18 AM
Michael
Michael - avatar
0
rf = RandomForestClassifier(n_estimators=100 ) rf.fit (xtrain, ytrain) print(rf.score (xtest, ytest))
30th May 2021, 9:24 AM
Amin Nouri
Amin Nouri - avatar
0
This is same with the solution above, but more easier and more updated (9/2021) import numpy as np random_state = int(input()) n = int(input()) rows = [] for i in range(n): rows.append([float(a) for a in input().split()]) X = np.array(rows) y = np.array([int(a) for a in input().split()]) from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=random_state) rf = RandomForestClassifier(n_estimators=5,random_state=random_state) rf.fit(X_train,y_train) print(rf.predict(X_test))
23rd Sep 2021, 6:03 AM
Hanif Izzudin Rahman
Hanif Izzudin Rahman - avatar
0
import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split random_state = int(input()) n = int(input()) rows = [] for i in range(n): rows.append([float(a) for a in input().split()]) x = np.array(rows) y = np.array([int(a) for a in input().split()]) x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=random_state) model=RandomForestClassifier(n_estimators=5,random_state=random_state) model.fit(x_train,y_train) print(model.predict(x_test))
2nd Dec 2021, 8:23 AM
Nichervan Essa Mahammad
Nichervan Essa Mahammad - avatar
0
import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split randomState = int(input()) n = int(input()) rows = [] for i in range(n): rows.append([float(a) for a in input().split()]) X = np.array(rows) y = np.array([int(a) for a in input().split()]) X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=randomState) rf = RandomForestClassifier(n_estimators=5,random_state=randomState) rf.fit(X_train,y_train) print(rf.predict(X_test))
17th Dec 2021, 10:08 AM
Ismoilov Abdug'ofur
Ismoilov Abdug'ofur - avatar
0
import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split random_state = int(input()) n = int(input()) rows = [] for i in range(n): rows.append([float(a) for a in input().split()]) x = np.array(rows) y = np.array([int(a) for a in input().split()]) x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=random_state) model=RandomForestClassifier(n_estimators=5,random_state=random_state) model.fit(x_train,y_train) print(model.predict(x_test))
26th Dec 2021, 11:18 AM
Nabila Muftia Ma'ruf Kartono
Nabila Muftia Ma'ruf Kartono - avatar
0
I don't get it because I get 2,3,4,5 right but in the sample output it says [1 0 0] (what I got) but in the explanation it says that the output is [1 1 0] and then in Test case 1 it says that the answer is [1 1 0] but it's the same question as the sample?
27th Feb 2022, 9:06 AM
Ilya Selivanov
Ilya Selivanov - avatar
0
# Author: Abdullah Abdelhakeem Amer# # Date : 1/3/2021 # # version : v01 # import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split randomState = int(input()) n = int(input()) rows = [] for i in range(n): rows.append([float(a) for a in input().split()]) X = np.array(rows) y = np.array([int(a) for a in input().split()]) X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=randomState) rf = RandomForestClassifier(n_estimators=5,random_state=randomState) rf.fit(X_train,y_train) print(rf.predict(X_test))
24th Apr 2022, 9:03 AM
HARIKRISHNAN R
0
import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split random_state = int(input()) n = int(input()) rows = [] for i in range(n): rows.append([float(a) for a in input().split()]) x = np.array(rows) y = np.array([int(a) for a in input().split()]) x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=random_state) model=RandomForestClassifier(n_estimators=5,random_state=random_state) model.fit(x_train,y_train) print(model.predict(x_test))
15th Sep 2022, 10:27 AM
Kanisak Shakya
Kanisak Shakya - avatar